文章摘要
谭风雷,陈梦涛,汪龙龙.基于积温效应和优化支持向量机的短期电力负荷预测[J].电力需求侧管理,2018,20(5):33-36
基于积温效应和优化支持向量机的短期电力负荷预测
Short⁃term electric power load forecasting based on accumulated temperature effect and optimized support vector machine
投稿时间:2018-04-13  修订日期:2018-06-19
DOI:10.3969/j.issn.1009-1831.2018.05.008
中文关键词: 负荷预测  积温效应  优化支持向量机  最小二乘法
英文关键词: load forecast  accumulated temperature effect  optimized support vector machine  least squares
基金项目:
作者单位
谭风雷 国网江苏省电力有限公司检修分公司南京211102 
陈梦涛 国网江苏省电力有限公司检修分公司南京211102 
汪龙龙 国网江苏省电力有限公司检修分公司南京211102 
摘要点击次数: 1861
全文下载次数: 1743
中文摘要:
      从积温效应的表现形式出发,提出一种考虑积温效应的优化支持向量机负荷预测方法。在充分研究积温效应2种表现形式的基础上,建立温度修正模型,同时为进一步提高预测精度,采用优化支持向量机预测负荷。最后借助江苏某地区的历史数据,采用最小二乘法求解积温效应参数、修正温度,并将修正之后的结果代入预测方法中,结果表明预测精度较高,具有一定的应用价值。
英文摘要:
      The load forecast using optimized support vector machine was proposed based on accumulated temperature effect.The correction model of temperature was established based on study of two forms of accumulated temperature effects. In order to improve prediction accuracy, optimized support vector machine was adopted to forecast load. Finally, with the data of a region in Jiangsu as history data, least squares was adopted to obtain optimal parameters, and then the correction of temperature was used into the above method to forecast load. The results show high prediction accuracy and have good prospect.
查看全文   查看/发表评论  下载PDF阅读器
关闭