文章摘要
王妍,吴传申,高山.基于电动汽车行驶数据快速聚类的充电站选址优化[J].电力需求侧管理,2021,23(3):08-12
基于电动汽车行驶数据快速聚类的充电站选址优化
Site selection optimization of charging station based on rapid clustering of electric vehicle driving data
投稿时间:2021-03-02  修订日期:2021-03-21
DOI:DOI:10.3969/j.issn.1009-1831.2021.03.003
中文关键词: 充电站  电动汽车  优化管理  谱聚类
英文关键词: charging stations  electric vehicle  optimizing management  spectral clustering
基金项目:国家电网公司科技项目“电动汽车与城市电网融合效能分析及评估指标体系研究”
作者单位
王妍 东南大学 电气工程学院南京210096江苏省智能电网技术与装备重点实验室南京210096 
吴传申 东南大学 电气工程学院南京210096江苏省智能电网技术与装备重点实验室南京210096 
高山 东南大学 电气工程学院南京210096江苏省智能电网技术与装备重点实验室南京210096 
摘要点击次数: 2017
全文下载次数: 758
中文摘要:
      随着电动汽车的规模化发展,急需对充电站进行合理的选址规划以满足实际需求。对电动汽车交通轨迹数据进行建模分析,采用谱聚类方法实现电动汽车行驶数据的快速聚类。针对快速聚类结果,以充电站选址后的建设及经济运维成本最小为目标,实现充电站的最优选址规划。算例结果表明,算法规划建立的充电站能够在满足用户使用方便性的基础上,使得年度经济成本最小化。
英文摘要:
      With the scaled development of electric vehicle, it is urgent to make reasonable site selection planning for charging stations to meet the actual needs. Electric vehicle traffic trajectory data are modeled and analyzed, and spectral clustering method is adopted to realize rapid clustering of electric vehicle driving data. According to the results of rapid clustering, the optimal location planning of charging stations is realized with the goal of minimizing the cost of construction economic operation and maintenance after the location of charging stations. The result of the calculation example shows that the charging station established can satisfy the user’s convenience and minimize the annual economic cost.
查看全文   查看/发表评论  下载PDF阅读器
关闭