文章摘要
杨首晖,陈传彬,王雪晶,李庆伟,吴元林,陈 静.基于小波变换和季节性Holt-Winters模型的 短期负荷预测方法[J].电力需求侧管理,2021,23(5):70-75
基于小波变换和季节性Holt-Winters模型的 短期负荷预测方法
A short⁃term load prediction method based on the wavelet transform and seasonal Holt⁃Winters model
投稿时间:2021-04-28  修订日期:2021-07-30
DOI:10. 3969 / j. issn. 1009-1831. 2021. 05. 014
中文关键词: 短期负荷预测  小波变换  Holt⁃Winters 模型  粒 子群算法  时间序列
英文关键词: short⁃term load forecasting  wavelet transform  Holt⁃Winters model  particle swarm optimization  time series
基金项目:福建省高校产学合作项目(2019H600)
作者单位
杨首晖 福建电力交易中心有限公司福州 350003 
陈传彬 福建电力交易中心有限公司福州 350003 
王雪晶 福建电力交易中心有限公司福州 350003 
李庆伟 福建电力交易中心有限公司福州 350003 
吴元林 国网信通亿力科技有限责任公司福州 350003 
陈 静 福州大学 电气工程与自动化学院福州 350108 
摘要点击次数: 1311
全文下载次数: 575
中文摘要:
      精准的负荷预测对售电公司在电力市场中的运行 起着十分重要的作用,而企业用户的负荷受多种因素的影响 具有不平稳的特性,对此,提出了基于离散小波分解和粒子群 优化的季节性Holt-Winters模型的短期负荷预测方法。针对 原始负荷序列周期性不平稳的特性,利用离散小波变换对原 始负荷序列进行分解,并采用季节性Holt-Winters模型进行预 测,同时借助小波去噪和粒子群算法进一步提高预测模型的 准确性。小波去噪在过滤原始数据中潜在的噪声的同时,对 数据进行平滑处理,而粒子群算法能让Holt-Winters模型在训 练过程找到最优参数。采用该模型来预测具有不同变化趋势 的日负荷曲线,结果表明所提出的模型具有较高的预测精度,可适用于不同用电类型的用户负荷短期预测。
英文摘要:
      Accurate load forecasting plays a very important role in the operation of power selling companies in the power market. However, the load of enterprise users is unstable under the influence of various factors. Therefore, a short-term load forecasting method based on the seasonal Holt-Winters model of discrete wavelet decomposition and particle swarm optimization is proposed. In view of the unsteady periodicity of the original load sequence, the discrete wavelet transform is used to decompose the original load sequence, and the seasonal Holt-Winters model is adopted for prediction. Meanwhile, wavelet denoising and particle swarm optimization algorithm are used to further improve the accuracy of the prediction model. Wavelet denoising not only eliminates the potential noise in the original data, but also smoothes the data, and particle swarm optimization allows Holt-Winters model to find the optimal parameters during training. The model is used for short-term prediction of load data with different variation characteristics, and the experimental results show that the model has good prediction accuracy and can be applied to short-term load prediction of users with different power consumption types.
查看全文   查看/发表评论  下载PDF阅读器
关闭