戴明明,王 康,李 强,石炬烽,邓亚伟,张荣荣,刘蓉晖,孙改平.基于天气分类和卷积神经网络的短期负荷预测方法[J].电力需求侧管理,2023,25(3):93-98 |
基于天气分类和卷积神经网络的短期负荷预测方法 |
Short-term load forecasting method based on weather classification and convolutional neural network |
投稿时间:2023-01-06 修订日期:2023-03-02 |
DOI:10. 3969 / j. issn. 1009-1831. 2023. 03. 015 |
中文关键词: 新型电力负荷 天气分类 特征选择 卷积神经网络 短期预测 |
英文关键词: new power load weather classification feature selection convolutional neural network short-term forecast |
基金项目:国网安徽省电力有限公司科技项目(5212T021000A) |
|
摘要点击次数: 1154 |
全文下载次数: 268 |
中文摘要: |
为减少天气因素对短期电力负荷预测效果的影响,提高模型的预测精度,提出了一种基于天气分类和卷积神经网络的短期负荷预测模型。首先通过天气类型初分将原始数据样本集划分为晴天、阴天、多云和雨天4种类型。其次,为了识别相似气象条件,运用相关系数和k均值聚类方法,找到对新型负荷出力影响最大的气象因素,并对其聚类,选取高相似度的数据样本。之后根据特征选择的结果,构造神经网络输入数据集。最后,将该数据集输入至卷积神经网络训练并预测。通过算例验证分析所提模型具有更高的预测精度。 |
英文摘要: |
In order to reduce the impact of weather factors on short-term power load forecasting and improve the forecasting accuracy of the model, a short-term load forecasting model based on weather classification and convolutional neural networks is proposed. Firstly,through the preliminary classification of weather types, the model divides the original data sample set into four types such as sunny,cloudy, cloudy and rainy days. Secondly, in order to identify similar meteorological conditions, the correlation coefficient and k- means clustering method are used to find the meteorological factors that have the greatest impact on the new load output, cluster them, and select high similarity data samples. Then, according to the result of feature selection, the neural network input data set is constructed. Finally, the data set is input to the convolutional neural network for training and prediction. The proposed model has higher prediction accuracy through verification and analysis of numerical examples. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |