陈 慧,陈 适,郭银婷,连淑婷,王 康,韦先灿.基于正则自编码器及Optuna寻优的异常用电数据清洗研究[J].电力需求侧管理,2023,25(5):53-58 |
基于正则自编码器及Optuna寻优的异常用电数据清洗研究 |
Abnormal power consumption data cleaning based on regular self-encoding and Optuna optimization |
投稿时间:2023-02-09 修订日期:2023-06-30 |
DOI:10. 3969 / j. issn. 1009-1831. 2023. 05. 009 |
中文关键词: 异常数据清洗 自编码器 正则化 Optuna寻优 |
英文关键词: abnormal data cleaning self- encoder regularization Optuna optimization |
基金项目:国网福建省电力有限公司科技项目(52130X21001A) |
|
摘要点击次数: 389 |
全文下载次数: 293 |
中文摘要: |
为有效解决用电信息采集系统中电量数据丢失问题,提出基于正则自编码器的缺失数据填补方法。首先,根据正则自编码器学习到的特征重构电量数据,实现缺失数据的修复。然后,通过对损失函数增加L21范数及正交约束实现正则化,提升模型的泛化能力,并采用Optuna实现超参数的自动寻优。最后,实际数据集的测试结果表明:与其他自编码器相比,正则自编码器能够较为准确地补齐缺失数据。 |
英文摘要: |
In order to effectively solve the problem of consumption loss in the electric energy information acquisition system,a method of filling missing data based on regular self- encoders is proposed. Firstly, the energy data according to the characteristics learned by the regular autoencoder is reconstructed, and the repair of the missing data is realized. Then, regularization by adding the L21- norm is realized and orthogonal constraints to the loss function, the generalization ability of the model and uses Optuna to realize the automatic optimization of hyperparameters is improved. Finally, the test results of the actual data set show that compared with other autoencoders, the regular autoencoder can accurately fill in the missing data. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|